Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{*N*-methyl-*N*'-[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine}zinc bis(perchlorate)

Chen-Yi Wang

Department of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China

Correspondence e-mail: chenyi_wang@163.com

Received 23 June 2011; accepted 1 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.015 Å; R factor = 0.059; wR factor = 0.168; data-to-parameter ratio = 10.5.

The title mononuclear zinc(II) complex, $[Zn(C_{10}H_{15}N_3)_2]$ -(ClO₄)₂, was obtained by the reaction of 2-acetylpyridine, *N*methylethane-1,2-diamine and zinc perchlorate in methanol. The asymmetric unit of the complex contains two independent $[Zn(C_{10}H_{15}N_3)_2]^{2+}$ cations and four perchlorate anions. The Zn^{II} atom in each complex cation is six-coordinated by two pyridine N, two imine N and two amine N atoms from two *N*-methyl-*N'*-[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine Schiff base ligands in a distorted octahedral geometry. The pyridine rings in each of the complex cations are approximately perpendicular to each other, making dihedral angles of 88.4 (3) and 87.9 (3)°. The perchlorate anions are linked to the complex cations through N-H···O hydrogen bonds

Related literature

For Schiff base complexes we have reported previously, see: Wang (2009); Wang & Ye (2011). For other similar zinc complexes, see: Cai *et al.* (2009); Yang *et al.* (2009); Bing *et al.* (2010); Wang *et al.* (2010).

Experimental

Crystal data

 $[Zn(C_{10}H_{15}N_{3})_{2}](CIO_{4})_{2}$ $M_{r} = 618.77$ Monoclinic, $P2_{1}$ a = 12.7999 (3) Å b = 15.8414 (4) Å c = 13.6869 (3) Å $\beta = 102.461$ (1)°

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.708, T_{\rm max} = 0.745$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.059$	
$wR(F^2) = 0.168$	
S = 1.04	
7055 reflections	
675 parameters	
7 restraints	

7055 independent reflections 5567 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 23.9^{\circ}$

12863 measured reflections

 $V = 2709.89 (11) \text{ Å}^3$

 $0.32 \times 0.30 \times 0.27 \text{ mm}$

Mo $K\alpha$ radiation

 $\mu = 1.16 \text{ mm}^-$

T = 298 K

Z = 4

H-atom parameters constrained $\Delta \rho_{max} = 0.73 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.63 \text{ e} \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2683 Friedel pairs Flack parameter: 0.01 (2)

Table 1 Selected bond lengths (Å).

Zn1-N5	2.087 (6)	Zn2-N11	2.090 (7)
Zn1-N2	2.105 (6)	Zn2-N8	2.109 (7)
Zn1-N3	2.163 (6)	Zn2-N9	2.188 (7)
Zn1-N4	2.210 (7)	Zn2-N7	2.209 (6)
Zn1-N6	2.215 (7)	Zn2-N12	2.224 (7)
Zn1-N1	2.278 (6)	Zn2-N10	2.225 (7)

Table 2

Hydrogen-bond	geometry	(Å	 °]).
---------------	----------	----	------------	----

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N12-H12A\cdots O5^{i}$	0.91	2.55	3.425 (13)	163
$N12-H12A\cdots O7^{i}$	0.91	2.38	3.175 (17)	146
$N9 - H9C \cdot \cdot \cdot O8^{i}$	0.91	2.45	3.315 (14)	158
$N9-H9C \cdot \cdot \cdot O5^{i}$	0.91	2.39	3.188 (13)	146
$N6-H6A\cdotsO10^{ii}$	0.91	2.55	3.30 (3)	140
$N3-H3A\cdotsO16^{iii}$	0.91	2.28	3.092 (11)	148

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, -z + 1; (ii) x + 1, y, z - 1; (iii) x, y, z - 1.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the Natural Science Foundation of China (No. 31071856), the Natural Science Foundation of Zhejiang Province (No. Y407318) and the Applied Research Project on Nonprofit Technology of Zhejiang Province (No. 2010 C32060).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5175).

References

- Bing, Y., Li, X., Zha, M. & Lu, Y. (2010). Acta Cryst. E66, m1524-m1525. Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin,
- USA. Cai, Y.-J., Huang, P., Li, J. & Wang, Q. (2009). Acta Cryst. E65, m1115.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.
- Wang, C.-Y., Han, Z.-P., Wu, X., Yuan, C.-J. & Zhou, J.-B. (2010). Acta Cryst. E66, m120.
- Wang, C. Y. & Ye, J. Y. (2011). Russ. J. Coord. Chem. 37, 235-241.
- Yang, J., Li, J., Zhang, X. & Wang, Q. (2009). Acta Cryst. E65, m1062.

Acta Cryst. (2011). E67, m1038-m1039 [doi:10.1107/S1600536811026079]

Bis{*N*-methyl-*N*'-[1-(pyridin-2-yl)ethylidene]ethane-1,2-diamine}zinc bis(perchlorate)

C.-Y. Wang

Comment

As part of our investigations into Schiff base complexes (Wang & Ye, 2011; Wang, 2009), we have synthesized the title compound, a new mononuclear zinc(II) complex, Fig. 1. The asymmetric unit of the complex contains two independent $[Zn(C_{10}H_{15}N_3)_2]^{2+}$ cations and four perchlorate anions. The Zn atom in the complex is six-coordinated by two pyridine N, two imine N, and two amine N atoms from two Schiff base ligands *N*-methyl-*N*⁻(1-pyridin-2-ylethylidene)ethane- 1,2-diamine, forming an octahedral geometry. The two pyridine rings in the complex cations are approximately perpendicular to each other, with the dihedral angles of 88.4 (3) and 87.9 (3)°, respectively. The *trans* angles at Zn atoms are in the range 151.3 (3)–175.1 (3)°; the other angles are in the range 72.8 (2)–113.7 (3)° (Table 1), indicating a distorted octahedral coordination. The Zn–O and Zn–N bond lengths (Table 1) are comparable with those observed in other similar zinc(II) complexes (Cai *et al.*, 2009; Yang *et al.*, 2009; Bing *et al.*, 2010; Wang *et al.*, 2010). The perchlorate anions are linked to the complex cations through N—H···O hydrogen bonds (Table 2).

Experimental

2-Acetylpyridine (1.0 mmol, 0.121 g), *N*-methylethane-1,2-diamine (1.0 mmol, 0.074 g), and zinc perchlorate hexahydrate (1.0 mmol, 0.372 g) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a clear colorless solution. After keeping the solution in air for 5 d, colorless block-shaped crystals were formed at the bottom of the vessel.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, N—H distances of 0.91 Å, and with $U_{iso}(H)$ set at $1.2U_{eq}(C,N)$ and $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of the molecule 1 Zn1 complex together with its associated of the perchlorate anions, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

Fig. 2. The molecular structure of the molecule 2 Zn2 complex together with its associated of the perchlorate anions, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

Bis{N-methyl-N'-[1-(pyridin-2-yl)ethylidene]ethane- 1,2-diamine}zinc bis(perchlorate)

F(000) = 1280 $D_x = 1.517 \text{ Mg m}^{-3}$

 $\theta = 2.5-24.6^{\circ}$ $\mu = 1.16 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.32 \times 0.30 \times 0.27 \text{ mm}$

Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 3298 reflections

Crystal data
[Zn(C ₁₀ H ₁₅ N ₃) ₂](ClO ₄) ₂
$M_r = 618.77$
Monoclinic, P2 ₁
Hall symbol: P 2yb
<i>a</i> = 12.7999 (3) Å
<i>b</i> = 15.8414 (4) Å
c = 13.6869 (3) Å
$\beta = 102.461 \ (1)^{\circ}$
$V = 2709.89 (11) \text{ Å}^3$
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	7055 independent reflections
Radiation source: fine-focus sealed tube	5567 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.034$
ω scans	$\theta_{\text{max}} = 23.9^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 14$
$T_{\min} = 0.708, \ T_{\max} = 0.745$	$k = -15 \rightarrow 18$
12863 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.059$	H-atom parameters constrained
$wR(F^2) = 0.168$	$w = 1/[\sigma^2(F_o^2) + (0.1062P)^2 + 0.2728P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
7055 reflections	$\Delta \rho_{max} = 0.73 \text{ e } \text{\AA}^{-3}$
675 parameters	$\Delta \rho_{\rm min} = -0.63 \text{ e } \text{\AA}^{-3}$
7 restraints	Absolute structure: Flack (1983), 2683 Friedel pairs

Primary atom site location: structure-invariant direct Flack parameter: 0.01 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1	0.88515 (6)	0.30560 (5)	0.10215 (6)	0.0425 (3)
Zn2	0.38341 (7)	0.19458 (6)	0.59030 (6)	0.0464 (3)
Cl1	0.7463 (2)	0.0560 (2)	0.4186 (2)	0.0880 (8)
C12	0.3370 (3)	0.5819 (3)	0.1430 (3)	0.1132 (11)
C13	0.2472 (2)	0.1721 (2)	0.9959 (2)	0.0807 (8)
Cl4	0.8419 (3)	0.4442 (2)	0.7056 (2)	0.0955 (9)
01	0.7313 (12)	0.1354 (7)	0.3791 (9)	0.182 (6)
O2	0.8398 (9)	0.0241 (11)	0.3914 (11)	0.196 (7)
03	0.7689 (10)	0.0569 (9)	0.5237 (7)	0.151 (4)
O4	0.6598 (7)	0.0056 (6)	0.3797 (9)	0.138 (4)
O5	0.3300 (8)	0.5784 (7)	0.2452 (6)	0.122 (3)
O6	0.2474 (7)	0.5587 (9)	0.0807 (7)	0.171 (6)
O7	0.4172 (9)	0.5280 (11)	0.1406 (14)	0.234 (9)
O8	0.3758 (13)	0.6601 (8)	0.1233 (8)	0.188 (7)
O9	0.3458 (6)	0.1339 (7)	1.0385 (10)	0.149 (5)
O10	0.1706 (10)	0.1324 (12)	1.018 (2)	0.297 (13)
011	0.229 (2)	0.1748 (15)	0.9013 (9)	0.295 (13)
O12	0.2362 (12)	0.2480 (10)	1.0413 (11)	0.221 (8)
O13	0.9530 (6)	0.4452 (10)	0.7187 (8)	0.151 (5)
O14	0.816 (2)	0.3733 (13)	0.6554 (14)	0.339 (17)
O15	0.8043 (11)	0.5059 (11)	0.6428 (9)	0.194 (8)
O16	0.8055 (7)	0.4482 (7)	0.7922 (5)	0.122 (4)
N1	0.8801 (5)	0.3548 (4)	0.2575 (5)	0.0511 (16)
N2	0.9733 (5)	0.4188 (4)	0.1230 (5)	0.0466 (15)
N3	0.9174 (5)	0.3229 (5)	-0.0453 (5)	0.0529 (17)
H3A	0.8635	0.3558	-0.0797	0.064*
N4	0.7167 (5)	0.3456 (5)	0.0521 (5)	0.0531 (17)
N5	0.7953 (5)	0.1979 (4)	0.1151 (5)	0.0484 (15)
N6	1.0141 (5)	0.2130 (5)	0.1570 (6)	0.0611 (19)
H6A	1.0598	0.2203	0.1152	0.073*
N7	0.2080 (5)	0.1975 (5)	0.5748 (5)	0.0553 (17)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

N8	0.3555 (6)	0.2852 (4)	0.6947 (5)	0.0580 (19)
N9	0.5465 (6)	0.2398 (5)	0.6485 (6)	0.066 (2)
H9C	0.5754	0.2065	0.7016	0.080*
N10	0.3591 (5)	0.2709 (4)	0.4508 (5)	0.0506 (16)
N11	0.4071 (5)	0.1126 (4)	0.4775 (5)	0.0523 (17)
N12	0.3979 (6)	0.0720 (5)	0.6714 (5)	0.063 (2)
H12A	0.4670	0.0675	0.7054	0.076*
C1	0.9455 (6)	0.4204 (5)	0.2849 (5)	0.0441 (17)
C2	0.9688 (8)	0.4491 (6)	0.3818 (7)	0.071 (3)
H2	1.0160	0.4939	0.3991	0.085*
C3	0.9234 (9)	0.4127 (7)	0.4535 (8)	0.078 (3)
H3	0.9407	0.4307	0.5197	0.094*
C4	0.8510 (8)	0.3481 (6)	0.4235 (7)	0.065 (2)
H4	0.8159	0.3234	0.4691	0.079*
C5	0.8314 (7)	0.3210 (6)	0.3274 (7)	0.063 (2)
Н5	0.7825	0.2774	0.3084	0.075*
C6	0.9871 (6)	0.4594 (5)	0.2052 (7)	0.054 (2)
C7	1.0410 (10)	0.5439 (6)	0.2197 (9)	0.084 (3)
H7A	1.0743	0.5553	0.1645	0.127*
H7B	1.0944	0.5438	0.2809	0.127*
H7C	0.9889	0.5869	0.2229	0.127*
C8	1.0080 (8)	0.4481 (7)	0.0341 (7)	0.065 (2)
H8A	1.0772	0.4754	0.0534	0.078*
H8B	0.9572	0.4889	-0.0015	0.078*
C9	1.0154 (7)	0.3738 (7)	-0.0327 (7)	0.064 (2)
H9A	1.0246	0.3935	-0.0974	0.077*
H9B	1.0769	0.3395	-0.0032	0.077*
C10	0.9219 (10)	0.2486 (8)	-0.1077 (9)	0.092 (3)
H10A	0.9431	0.2654	-0.1680	0.138*
H10B	0.8527	0.2225	-0.1242	0.138*
H10C	0.9731	0.2092	-0.0718	0.138*
C11	0.6467 (6)	0.2861 (6)	0.0666 (6)	0.051 (2)
C12	0.5389 (7)	0.3028 (9)	0.0520 (7)	0.072 (3)
H12	0.4913	0.2615	0.0634	0.087*
C13	0.5041 (9)	0.3804 (9)	0.0210 (9)	0.086 (3)
H13	0.4312	0.3920	0.0092	0.103*
C14	0.5738 (8)	0.4436 (8)	0.0061 (8)	0.082 (3)
H14	0.5502	0.4975	-0.0147	0.099*
C15	0.6795 (7)	0.4216 (7)	0.0239 (7)	0.067 (2)
H15	0.7286	0.4628	0.0156	0.081*
C16	0.6942 (6)	0.2031 (6)	0.1007 (5)	0.0490 (18)
C17	0.6187 (9)	0.1327 (9)	0.1147 (10)	0.101 (4)
H17A	0.6394	0.0814	0.0867	0.151*
H17B	0.5470	0.1474	0.0816	0.151*
H17C	0.6218	0.1248	0.1848	0.151*
C18	0.8564 (8)	0.1219 (6)	0.1499 (8)	0.066 (2)
H18A	0.8204	0.0726	0.1165	0.080*
H18B	0.8630	0.1152	0.2214	0.080*
C19	0.9640 (10)	0.1310 (8)	0.1265 (11)	0.101 (4)
			· · ·	

H19A	1.0101	0.0865	0.1601	0.121*
H19B	0.9575	0.1240	0.0550	0.121*
C20	1.0787 (10)	0.2266 (10)	0.2525 (10)	0.124 (6)
H20A	1.0374	0.2173	0.3023	0.186*
H20B	1.1048	0.2836	0.2572	0.186*
H20C	1.1381	0.1882	0.2633	0.186*
C21	0.1783 (7)	0.2513 (6)	0.6400 (7)	0.059 (2)
C22	0.0704 (9)	0.2577 (9)	0.6456 (10)	0.087 (4)
H22	0.0490	0.2954	0.6896	0.104*
C23	-0.0012 (10)	0.2079 (12)	0.5858 (13)	0.115 (6)
H23	-0.0720	0.2080	0.5923	0.138*
C24	0.0281 (8)	0.1574 (9)	0.5157 (11)	0.092 (4)
H24	-0.0225	0.1263	0.4712	0.111*
C25	0.1365 (7)	0.1538 (7)	0.5127 (8)	0.074 (3)
H25	0.1580	0.1195	0.4655	0.089*
C26	0.2624 (8)	0.2988 (6)	0.7070 (6)	0.063 (2)
C27	0.2331 (11)	0.3632 (8)	0.7780 (9)	0.097 (4)
H27A	0.2969	0.3904	0.8140	0.146*
H27B	0.1980	0.3355	0.8243	0.146*
H27C	0.1860	0.4046	0.7406	0.146*
C28	0.4522 (9)	0.3275 (7)	0.7513 (7)	0.080 (3)
H28A	0.4786	0.2987	0.8143	0.096*
H28B	0.4360	0.3855	0.7655	0.096*
C29	0.5343 (9)	0.3251 (7)	0.6884 (9)	0.086 (3)
H29A	0.5138	0.3642	0.6331	0.103*
H29B	0.6025	0.3435	0.7283	0.103*
C30	0.6200 (8)	0.2383 (9)	0.5806 (11)	0.103 (4)
H30A	0.5877	0.2663	0.5193	0.155*
H30B	0.6356	0.1808	0.5666	0.155*
H30C	0.6851	0.2667	0.6112	0.155*
C31	0.3733 (6)	0.2261 (6)	0.3699 (6)	0.057 (2)
C32	0.3646 (8)	0.2638 (8)	0.2782 (7)	0.075 (3)
H32	0.3777	0.2329	0.2243	0.089*
C33	0.3352 (10)	0.3511 (8)	0.2661 (8)	0.087 (3)
H33	0.3252	0.3781	0.2044	0.105*
C34	0.3228 (9)	0.3926 (6)	0.3509 (9)	0.086 (3)
H34	0.3076	0.4501	0.3475	0.103*
C35	0.3321 (8)	0.3517 (7)	0.4399 (8)	0.073 (3)
H35	0.3191	0.3814	0.4947	0.088*
C36	0.4025 (6)	0.1378 (5)	0.3889 (6)	0.0485 (19)
C37	0.4197 (9)	0.0830 (7)	0.3018 (7)	0.075 (3)
H37A	0.4947	0.0803	0.3021	0.112*
H37B	0.3820	0.1072	0.2398	0.112*
H37C	0.3931	0.0272	0.3087	0.112*
C38	0.4362 (9)	0.0261 (6)	0.5132 (8)	0.071 (3)
H38A	0.4148	-0.0139	0.4589	0.085*
H38B	0.5130	0.0218	0.5376	0.085*
C39	0.3813 (8)	0.0074 (6)	0.5937 (8)	0.071 (3)
H39A	0.3052	0.0021	0.5657	0.085*

H39B	0.4065	-0.0463	0.6237	0.085*
C40	0.3310 (9)	0.0598 (9)	0.7436 (8)	0.090 (3)
H40A	0.2574	0.0566	0.7093	0.135*
H40B	0.3405	0.1064	0.7895	0.135*
H40C	0.3511	0.0084	0.7799	0.135*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0435 (5)	0.0404 (5)	0.0437 (5)	-0.0030 (4)	0.0099 (4)	0.0000 (4)
Zn2	0.0491 (5)	0.0463 (6)	0.0440 (5)	-0.0020 (4)	0.0104 (4)	-0.0043 (4)
Cl1	0.0811 (18)	0.098 (2)	0.0861 (19)	-0.0145 (16)	0.0205 (14)	0.0061 (16)
Cl2	0.100 (2)	0.137 (3)	0.097 (2)	-0.004 (2)	0.0113 (18)	0.013 (2)
C13	0.0684 (15)	0.100 (2)	0.0752 (17)	0.0028 (14)	0.0183 (12)	-0.0022 (15)
Cl4	0.107 (2)	0.103 (2)	0.0740 (18)	-0.0102 (18)	0.0128 (16)	-0.0008 (18)
O1	0.305 (17)	0.086 (7)	0.129 (9)	-0.083 (9)	-0.008 (9)	0.042 (7)
O2	0.108 (8)	0.296 (19)	0.198 (13)	-0.032 (10)	0.061 (8)	-0.131 (14)
O3	0.207 (11)	0.179 (11)	0.075 (6)	0.020 (9)	0.050 (7)	0.011 (7)
O4	0.073 (5)	0.100 (7)	0.212 (11)	-0.038 (5)	-0.035 (6)	0.047 (7)
O5	0.178 (9)	0.122 (8)	0.065 (5)	-0.049 (7)	0.029 (5)	0.020 (5)
O6	0.096 (6)	0.285 (16)	0.101 (7)	-0.091 (9)	-0.045 (5)	0.016 (8)
07	0.103 (8)	0.273 (18)	0.305 (19)	0.106 (10)	-0.001 (10)	-0.122 (16)
08	0.310 (16)	0.148 (10)	0.090 (6)	-0.150 (11)	0.008 (8)	0.032 (7)
09	0.069 (5)	0.127 (8)	0.233 (13)	0.028 (5)	-0.007 (6)	-0.040 (8)
O10	0.098 (9)	0.222 (18)	0.57 (4)	-0.043 (11)	0.063 (14)	0.11 (2)
O11	0.51 (3)	0.31 (2)	0.077 (8)	0.18 (2)	0.096 (13)	0.017 (11)
012	0.223 (13)	0.208 (15)	0.182 (12)	0.129 (12)	-0.070 (10)	-0.111 (11)
O13	0.068 (5)	0.262 (14)	0.124 (8)	0.036 (7)	0.027 (5)	-0.017 (9)
O14	0.51 (3)	0.34 (2)	0.261 (19)	-0.34 (3)	0.27 (2)	-0.23 (2)
O15	0.213 (12)	0.261 (16)	0.130 (9)	0.138 (12)	0.085 (9)	0.144 (11)
O16	0.133 (7)	0.193 (10)	0.055 (4)	0.084 (7)	0.050 (4)	0.030 (5)
N1	0.057 (4)	0.052 (4)	0.047 (4)	-0.006 (3)	0.016 (3)	-0.002 (3)
N2	0.051 (4)	0.044 (4)	0.045 (4)	-0.007 (3)	0.009 (3)	-0.001 (3)
N3	0.058 (4)	0.058 (5)	0.044 (4)	0.000 (3)	0.013 (3)	-0.004 (3)
N4	0.056 (4)	0.052 (4)	0.051 (4)	0.007 (4)	0.010 (3)	0.001 (3)
N5	0.058 (4)	0.039 (4)	0.047 (4)	-0.002 (3)	0.010 (3)	0.006 (3)
N6	0.052 (4)	0.057 (5)	0.073 (5)	0.009 (3)	0.009 (3)	0.008 (4)
N7	0.052 (4)	0.059 (4)	0.056 (4)	0.000 (4)	0.014 (3)	0.008 (4)
N8	0.074 (5)	0.052 (5)	0.046 (4)	0.007 (4)	0.008 (3)	-0.005 (3)
N9	0.055 (4)	0.057 (5)	0.083 (6)	-0.007 (4)	0.005 (4)	-0.010 (4)
N10	0.058 (4)	0.048 (4)	0.049 (4)	0.000 (3)	0.017 (3)	-0.002 (3)
N11	0.057 (4)	0.042 (4)	0.057 (5)	0.000 (3)	0.010 (3)	-0.009 (3)
N12	0.066 (4)	0.068 (5)	0.055 (4)	-0.010 (4)	0.011 (3)	0.014 (4)
C1	0.052 (4)	0.041 (4)	0.038 (4)	0.003 (4)	0.008 (3)	-0.003 (3)
C2	0.095 (7)	0.055 (6)	0.065 (6)	0.002 (5)	0.021 (5)	-0.010 (5)
C3	0.112 (8)	0.071 (7)	0.052 (6)	0.016 (6)	0.020 (6)	-0.007 (5)
C4	0.081 (6)	0.066 (6)	0.058 (6)	0.004 (5)	0.033 (5)	0.003 (5)
C5	0.073 (6)	0.063 (6)	0.056 (5)	0.002 (5)	0.021 (4)	0.020 (5)

C6	0.044 (4)	0.047 (5)	0.065 (5)	0.000 (4)	0.001 (4)	-0.004 (4)
C7	0.124 (9)	0.053 (6)	0.084 (7)	-0.027 (6)	0.038 (7)	-0.008 (5)
C8	0.070 (6)	0.071 (6)	0.060 (5)	-0.011 (5)	0.028 (5)	0.007 (5)
C9	0.053 (5)	0.088 (7)	0.057 (5)	0.000 (5)	0.023 (4)	-0.001 (5)
C10	0.120 (9)	0.089 (8)	0.068 (7)	-0.007 (7)	0.021 (6)	-0.015 (6)
C11	0.049 (5)	0.062 (6)	0.042 (4)	-0.001 (4)	0.011 (3)	-0.006 (4)
C12	0.045 (5)	0.113 (9)	0.059 (5)	-0.010 (6)	0.011 (4)	-0.009 (6)
C13	0.051 (6)	0.110 (10)	0.094 (8)	0.013 (7)	0.012 (5)	-0.026 (7)
C14	0.059 (6)	0.087 (8)	0.094 (8)	0.018 (6)	0.000 (5)	-0.024 (7)
C15	0.064 (6)	0.058 (6)	0.078 (6)	0.006 (5)	0.011 (5)	-0.005 (5)
C16	0.053 (5)	0.055 (5)	0.037 (4)	-0.007 (4)	0.007 (3)	-0.002 (4)
C17	0.082 (7)	0.117 (10)	0.104 (9)	-0.042 (7)	0.022 (6)	0.018 (8)
C18	0.077 (6)	0.048 (5)	0.067 (6)	0.002 (4)	0.001 (5)	0.006 (4)
C19	0.102 (7)	0.077 (6)	0.117 (8)	0.010 (6)	0.008 (6)	0.011 (6)
C20	0.103 (9)	0.144 (13)	0.097 (9)	0.064 (9)	-0.041 (7)	-0.014 (9)
C21	0.064 (5)	0.062 (6)	0.059 (6)	0.018 (5)	0.028 (5)	0.024 (5)
C22	0.057 (6)	0.107 (9)	0.105 (9)	0.027 (6)	0.036 (6)	0.047 (8)
C23	0.062 (8)	0.146 (14)	0.149 (13)	0.044 (9)	0.046 (9)	0.086 (12)
C24	0.047 (6)	0.107 (10)	0.111 (9)	0.002 (6)	-0.008 (6)	0.060 (9)
C25	0.051 (5)	0.100 (8)	0.065 (6)	-0.009 (5)	-0.001 (4)	0.009 (6)
C26	0.090 (7)	0.057 (6)	0.048 (5)	0.024 (5)	0.027 (5)	0.007 (5)
C27	0.149 (11)	0.084 (8)	0.072 (7)	0.035 (7)	0.054 (7)	-0.004 (6)
C28	0.101 (8)	0.070 (7)	0.062 (6)	-0.012 (6)	0.001 (5)	-0.030 (5)
C29	0.076 (7)	0.074 (8)	0.097 (8)	-0.021 (6)	-0.002 (6)	-0.016 (6)
C30	0.061 (6)	0.118 (10)	0.140 (11)	-0.039 (7)	0.043 (7)	-0.031 (9)
C31	0.050 (5)	0.072 (6)	0.052 (5)	-0.010 (4)	0.015 (4)	-0.002 (4)
C32	0.093 (7)	0.083 (7)	0.049 (5)	0.002 (6)	0.015 (5)	0.000 (5)
C33	0.130 (10)	0.076 (8)	0.059 (6)	-0.003 (7)	0.027 (6)	0.015 (6)
C34	0.120 (9)	0.041 (6)	0.089 (8)	-0.002 (5)	0.009(7)	0.016 (6)
C35	0.092 (7)	0.058 (7)	0.068 (6)	0.007 (5)	0.015 (5)	-0.002 (5)
C36	0.045 (4)	0.052 (5)	0.048 (5)	-0.002 (4)	0.008 (3)	-0.006 (4)
C37	0.098 (7)	0.074 (7)	0.059 (6)	0.005 (6)	0.030 (5)	-0.015 (5)
C38	0.092 (7)	0.048 (5)	0.074 (6)	0.015 (5)	0.020 (5)	0.002 (5)
C39	0.081 (7)	0.048 (6)	0.080 (7)	-0.006 (5)	0.008 (5)	-0.006 (5)
C40	0.094 (7)	0.104 (9)	0.077 (7)	-0.008 (7)	0.028 (6)	0.030 (7)

Geometric parameters (Å, °)

Zn1—N5	2.087 (6)	C8—H8A	0.9700
Zn1—N2	2.105 (6)	C8—H8B	0.9700
Zn1—N3	2.163 (6)	С9—Н9А	0.9700
Zn1—N4	2.210 (7)	С9—Н9В	0.9700
Zn1—N6	2.215 (7)	C10—H10A	0.9600
Zn1—N1	2.278 (6)	C10—H10B	0.9600
Zn2—N11	2.090 (7)	C10—H10C	0.9600
Zn2—N8	2.109 (7)	C11—C12	1.378 (12)
Zn2—N9	2.188 (7)	C11—C16	1.481 (12)
Zn2—N7	2.209 (6)	C12—C13	1.344 (18)
Zn2—N12	2.224 (7)	C12—H12	0.9300

Zn2—N10	2.225 (7)	C13—C14	1.385 (17)
Cl1—O1	1.366 (10)	С13—Н13	0.9300
Cl1—O4	1.375 (8)	C14—C15	1.368 (13)
Cl1—O3	1.406 (10)	C14—H14	0.9300
Cl1—O2	1.421 (11)	С15—Н15	0.9300
Cl2—O6	1.324 (8)	C16—C17	1.514 (13)
Cl2—O7	1.342 (10)	C17—H17A	0.9600
Cl2—O8	1.384 (10)	С17—Н17В	0.9600
Cl2—O5	1.421 (8)	С17—Н17С	0.9600
Cl3—O10	1.256 (14)	C18—C19	1.487 (16)
Cl3—O11	1.267 (12)	C18—H18A	0.9700
Cl3—O12	1.374 (12)	C18—H18B	0.9700
Cl3—O9	1.408 (9)	С19—Н19А	0.9700
Cl4—O14	1.321 (13)	С19—Н19В	0.9700
Cl4—O15	1.322 (10)	C20—H20A	0.9600
Cl4—O16	1.365 (7)	C20—H20B	0.9600
Cl4—O13	1.394 (8)	С20—Н20С	0.9600
N1—C1	1.338 (10)	C21—C22	1.404 (13)
N1—C5	1.359 (10)	C21—C26	1.463 (14)
N2—C6	1.275 (10)	C22—C23	1.35 (2)
N2—C8	1.458 (10)	С22—Н22	0.9300
N3—C10	1.462 (13)	C23—C24	1.36 (2)
N3—C9	1.470 (11)	С23—Н23	0.9300
N3—H3A	0.9100	C24—C25	1.398 (14)
N4—C15	1.321 (12)	C24—H24	0.9300
N4—C11	1.344 (10)	C25—H25	0.9300
N5—C16	1.269 (9)	C26—C27	1.509 (13)
N5—C18	1.457 (11)	С27—Н27А	0.9600
N6—C20	1.405 (13)	С27—Н27В	0.9600
N6—C19	1.468 (15)	С27—Н27С	0.9600
N6—H6A	0.9100	C28—C29	1.496 (15)
N7—C25	1.306 (12)	C28—H28A	0.9700
N7—C21	1.346 (12)	C28—H28B	0.9700
N8—C26	1.258 (11)	С29—Н29А	0.9700
N8—C28	1.472 (12)	С29—Н29В	0.9700
N9—C30	1.459 (12)	С30—Н30А	0.9600
N9—C29	1.478 (13)	С30—Н30В	0.9600
N9—H9C	0.9100	С30—Н30С	0.9600
N10—C35	1.326 (12)	C31—C32	1.373 (13)
N10—C31	1.359 (11)	C31—C36	1.456 (13)
N11—C36	1.265 (11)	C32—C33	1.434 (15)
N11—C38	1.476 (12)	C32—H32	0.9300
N12—C40	1.454 (11)	C33—C34	1.373 (15)
N12—C39	1.457 (12)	C33—H33	0.9300
N12—H12A	0.9100	C34—C35	1.362 (14)
C1—C2	1.372 (12)	C34—H34	0.9300
C1 - C6	1.451 (11)	C35—H35	0.9300
C2—C3	1.3/1 (14)	C36—C37	1.529 (12)
C2—H2	0.9300	C37—H37A	0.9600

C3—C4	1.382 (14)	С37—Н37В	0.9600
С3—Н3	0.9300	С37—Н37С	0.9600
C4—C5	1.355 (13)	C38—C39	1.460 (13)
C4—H4	0.9300	C38—H38A	0.9700
С5—Н5	0.9300	C38—H38B	0.9700
C6—C7	1.500 (13)	С39—Н39А	0.9700
С7—Н7А	0.9600	С39—Н39В	0.9700
С7—Н7В	0.9600	C40—H40A	0.9600
С7—Н7С	0.9600	C40—H40B	0.9600
C8—C9	1.506 (14)	C40—H40C	0.9600
N5—Zn1—N2	167.0 (2)	N3—C9—H9B	109.7
N5—Zn1—N3	113.7 (3)	С8—С9—Н9В	109.7
N2—Zn1—N3	79.3 (3)	Н9А—С9—Н9В	108.2
N5—Zn1—N4	75.0 (3)	N3—C10—H10A	109.5
N2—Zn1—N4	104.9 (3)	N3—C10—H10B	109.5
N3—Zn1—N4	92.5 (3)	H10A—C10—H10B	109.5
N5—Zn1—N6	79.2 (3)	N3—C10—H10C	109.5
N2—Zn1—N6	100.4 (3)	H10A-C10-H10C	109.5
N3—Zn1—N6	97.0 (3)	H10B-C10-H10C	109.5
N4—Zn1—N6	154.3 (3)	N4—C11—C12	121.5 (9)
N5—Zn1—N1	94.2 (2)	N4—C11—C16	115.4 (7)
N2—Zn1—N1	72.8 (2)	C12—C11—C16	123.1 (9)
N3—Zn1—N1	151.3 (3)	C13—C12—C11	118.4 (11)
N4—Zn1—N1	88.2 (2)	C13—C12—H12	120.8
N6—Zn1—N1	94.6 (3)	C11—C12—H12	120.8
N11—Zn2—N8	175.1 (3)	C12—C13—C14	121.8 (10)
N11—Zn2—N9	101.1 (3)	C12—C13—H13	119.1
N8—Zn2—N9	79.5 (3)	C14—C13—H13	119.1
N11—Zn2—N7	104.4 (3)	C15—C14—C13	115.7 (11)
N8—Zn2—N7	74.6 (3)	C15—C14—H14	122.2
N9—Zn2—N7	153.9 (3)	C13-C14-H14	122.2
N11—Zn2—N12	79.4 (3)	N4-C15-C14	124.4 (10)
N8—Zn2—N12	105.3 (3)	N4—C15—H15	117.8
N9—Zn2—N12	97.7 (3)	C14—C15—H15	117.8
N7—Zn2—N12	92.3 (3)	N5-C16-C11	116.2 (7)
N11—Zn2—N10	73.7 (3)	N5-C16-C17	126.2 (9)
N8—Zn2—N10	101.5 (3)	C11-C16-C17	117.6 (8)
N9—Zn2—N10	94.6 (3)	С16—С17—Н17А	109.5
N7—Zn2—N10	87.4 (2)	С16—С17—Н17В	109.5
N12—Zn2—N10	152.1 (3)	H17A—C17—H17B	109.5
01—Cl1—O4	110.5 (7)	C16—C17—H17C	109.5
O1—C11—O3	112.0 (8)	H17A—C17—H17C	109.5
O4—Cl1—O3	111.9 (7)	H17B—C17—H17C	109.5
O1—Cl1—O2	106.1 (11)	N5—C18—C19	107.8 (8)
O4—Cl1—O2	110.2 (8)	N5—C18—H18A	110.1
O3—Cl1—O2	105.8 (8)	C19—C18—H18A	110.1
O6—Cl2—O7	111.6 (10)	N5—C18—H18B	110.1
O6—Cl2—O8	114.9 (9)	C19—C18—H18B	110.1
O7—Cl2—O8	104.8 (11)	H18A—C18—H18B	108.5

O6—C12—O5	113.2 (7)	N6-C19-C18	113.1 (10)
O7—Cl2—O5	102.2 (10)	N6—C19—H19A	109.0
O8—Cl2—O5	109.2 (7)	С18—С19—Н19А	109.0
O10-Cl3-O11	106.6 (17)	N6—C19—H19B	109.0
O10—Cl3—O12	99.6 (13)	C18—C19—H19B	109.0
O11—Cl3—O12	114.8 (12)	H19A—C19—H19B	107.8
O10—Cl3—O9	111.2 (10)	N6—C20—H20A	109.5
O11—Cl3—O9	112.7 (10)	N6—C20—H20B	109.5
O12—Cl3—O9	111.0 (7)	H20A—C20—H20B	109.5
O14—Cl4—O15	106.0 (14)	N6-C20-H20C	109.5
O14—Cl4—O16	113.5 (8)	H20A—C20—H20C	109.5
O15—Cl4—O16	112.7 (7)	H20B-C20-H20C	109.5
O14—Cl4—O13	101.9 (12)	N7—C21—C22	120.3 (10)
O15—Cl4—O13	107.1 (9)	N7—C21—C26	117.8 (7)
O16-Cl4-O13	114.7 (6)	C22—C21—C26	121.8 (10)
C1—N1—C5	117.6 (7)	C23—C22—C21	118.2 (13)
C1—N1—Zn1	112.7 (5)	С23—С22—Н22	120.9
C5—N1—Zn1	129.2 (6)	C21—C22—H22	120.9
C6—N2—C8	124.5 (7)	C22—C23—C24	121.2 (12)
C6—N2—Zn1	121.2 (5)	С22—С23—Н23	119.4
C8—N2—Zn1	114.1 (5)	С24—С23—Н23	119.4
C10—N3—C9	111.7 (7)	C23—C24—C25	118.1 (13)
C10—N3—Zn1	118.8 (6)	C23—C24—H24	120.9
C9—N3—Zn1	106.8 (5)	C25—C24—H24	120.9
C10—N3—H3A	106.2	N7—C25—C24	121.3 (12)
C9—N3—H3A	106.2	N7—C25—H25	119.4
Zn1—N3—H3A	106.2	C24—C25—H25	119.4
C15—N4—C11	118.2 (7)	N8—C26—C21	114.6 (8)
C15—N4—Zn1	128.1 (6)	N8—C26—C27	125.2 (10)
C11—N4—Zn1	113.0 (5)	C21—C26—C27	120.0 (9)
C16—N5—C18	124.1 (7)	С26—С27—Н27А	109.5
C16—N5—Zn1	119.8 (6)	С26—С27—Н27В	109.5
C18—N5—Zn1	115.9 (5)	H27A—C27—H27B	109.5
C20—N6—C19	122.3 (10)	С26—С27—Н27С	109.5
C20—N6—Zn1	117.4 (7)	H27A—C27—H27C	109.5
C19—N6—Zn1	104.0 (6)	H27B—C27—H27C	109.5
C20—N6—H6A	103.6	N8—C28—C29	107.5 (8)
C19—N6—H6A	103.6	N8—C28—H28A	110.2
Zn1—N6—H6A	103.6	C29—C28—H28A	110.2
C25—N7—C21	120.6 (8)	N8—C28—H28B	110.2
C25—N7—Zn2	127.3 (7)	C29—C28—H28B	110.2
C21—N7—Zn2	112.1 (6)	H28A—C28—H28B	108.5
C26—N8—C28	124.3 (8)	N9—C29—C28	112.3 (9)
C26—N8—Zn2	120.8 (6)	N9—C29—H29A	109.1
C28—N8—Zn2	114.9 (6)	C28—C29—H29A	109.1
C30—N9—C29	112.7 (9)	N9—C29—H29B	109.1
C30—N9—Zn2	117.3 (7)	С28—С29—Н29В	109.1
C29—N9—Zn2	105.4 (6)	H29A—C29—H29B	107.9
С30—N9—H9С	107.0	N9—C30—H30A	109.5

С29—N9—H9С	107.0	N9—C30—H30B	109.5
Zn2—N9—H9C	107.0	H30A—C30—H30B	109.5
C35—N10—C31	119.4 (8)	N9—C30—H30C	109.5
C35—N10—Zn2	127.3 (7)	H30A—C30—H30C	109.5
C31—N10—Zn2	113.3 (6)	H30B-C30-H30C	109.5
C36—N11—C38	124.6 (8)	N10-C31-C32	121.2 (9)
C36—N11—Zn2	121.8 (6)	N10-C31-C36	115.5 (8)
C38—N11—Zn2	113.5 (6)	C32—C31—C36	123.2 (9)
C40—N12—C39	112.9 (8)	C31—C32—C33	119.5 (10)
C40—N12—Zn2	117.2 (7)	С31—С32—Н32	120.3
C39—N12—Zn2	105.4 (5)	С33—С32—Н32	120.3
C40—N12—H12A	106.9	C34—C33—C32	116.1 (10)
C39—N12—H12A	106.9	С34—С33—Н33	122.0
Zn2—N12—H12A	106.9	С32—С33—Н33	122.0
N1—C1—C2	121.4 (8)	C35—C34—C33	121.7 (10)
N1—C1—C6	115.4 (7)	С35—С34—Н34	119.2
C2—C1—C6	123.2 (8)	C33—C34—H34	119.2
C3—C2—C1	121.1 (10)	N10-C35-C34	122.0 (10)
С3—С2—Н2	119.5	N10-C35-H35	119.0
C1—C2—H2	119.5	С34—С35—Н35	119.0
C2—C3—C4	117.4 (9)	N11—C36—C31	115.5 (8)
С2—С3—Н3	121.3	N11—C36—C37	125.6 (8)
С4—С3—Н3	121.3	C31—C36—C37	118.7 (8)
C5—C4—C3	119.7 (9)	С36—С37—Н37А	109.5
С5—С4—Н4	120.2	С36—С37—Н37В	109.5
C3—C4—H4	120.2	Н37А—С37—Н37В	109.5
C4—C5—N1	122.8 (9)	С36—С37—Н37С	109.5
С4—С5—Н5	118.6	Н37А—С37—Н37С	109.5
N1—C5—H5	118.6	Н37В—С37—Н37С	109.5
N2—C6—C1	116.5 (7)	C39—C38—N11	108.1 (8)
N2—C6—C7	122.6 (8)	С39—С38—Н38А	110.1
C1—C6—C7	120.9 (8)	N11—C38—H38A	110.1
С6—С7—Н7А	109.5	С39—С38—Н38В	110.1
С6—С7—Н7В	109.5	N11—C38—H38B	110.1
H7A—C7—H7B	109.5	H38A—C38—H38B	108.4
С6—С7—Н7С	109.5	N12-C39-C38	113.0 (8)
H7A—C7—H7C	109.5	N12—C39—H39A	109.0
H7B—C7—H7C	109.5	С38—С39—Н39А	109.0
N2—C8—C9	109.1 (8)	N12—C39—H39B	109.0
N2—C8—H8A	109.9	С38—С39—Н39В	109.0
С9—С8—Н8А	109.9	Н39А—С39—Н39В	107.8
N2—C8—H8B	109.9	N12—C40—H40A	109.5
С9—С8—Н8В	109.9	N12—C40—H40B	109.5
H8A—C8—H8B	108.3	H40A—C40—H40B	109.5
N3—C9—C8	109.6 (6)	N12—C40—H40C	109.5
N3—C9—H9A	109.7	H40A—C40—H40C	109.5
С8—С9—Н9А	109.7	H40B—C40—H40C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
N12—H12A···O5 ⁱ	0.91	2.55	3.425 (13)	163.
N12—H12A····O7 ⁱ	0.91	2.38	3.175 (17)	146.
N9—H9C···O8 ⁱ	0.91	2.45	3.315 (14)	158.
N9—H9C···O5 ⁱ	0.91	2.39	3.188 (13)	146.
N6—H6A…O10 ⁱⁱ	0.91	2.55	3.30 (3)	140.
N3—H3A····O16 ⁱⁱⁱ	0.91	2.28	3.092 (11)	148.

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*+1; (ii) *x*+1, *y*, *z*-1; (iii) *x*, *y*, *z*-1.

Fig. 2